
Chapter 2
Numerical optimization

2.1 Algorithms for optimization of single-variable
functions. Bracketing techniques

Consider a single variable real-valued function f(x) : [a, b] → R for which it
is required to find an optimum in the interval [a, b]. Among the algorithms
for univariate optimization, the golden section and the Fibonacci search tech-
niques are fast, accurate, robust and they do not require derivatives, (Sinha,
2007; Press et al., 2007; Mathews, 2005). These methods can be used if the op-
timum is bracketed in a finite interval and the function is unimodal on [a, b].
The algorithms will be described for finding a minimum. The problem of
finding a maximum is similar and may be solved with a very slight alteration
of the algorithm or by changing the sign of the function.

A function f(x) is unimodal on an interval [a, b] if it has exactly one lo-
cal minimum x∗ on the interval, i.e., it is strictly decreasing on [a, x∗] and is
strictly increasing on [x∗, b].

The initial interval [a, b] is called the initial interval of uncertainty. The
general strategy of golden section and Fibonacci methods is to progressively
reduce the interval. This can be accomplished by placing experiments and
eliminating parts of the initial interval that do not contain the optimum. Con-
sider the interval divided by two points x1 and x2 located at the same distance
from the boundaries a and b, as shown in Figure 2.2, i.e., the distance from a

to x2 is the same as the distance from x1 to b. The function value is evaluated

49

Chapter 2. Numerical optimization

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

f(
x)

Figure 2.1: Unimodal function

Figure 2.2: Bracketing the minimum

in these two points and the interval is reduced from a to x1 if f(x1) ≤ f(x2),
or from x2 to b, otherwise. The procedure is iterative and it stops when the
length of the interval is smaller than a given tolerance ε.

2.1.1 Golden Section Search

The golden section search technique (Press et al., 2007; Mathews, 2005) eval-
uates the function values at two interior points x1 and x2 chosen such that
each one of them divides the interval in a ratio r, with 1

2 < r < 1 to preserve
the order a < x1 < x2 < b. As shown in Figure 2.2, the distance d1 can be
written as:

d1 = x2 − a = b− x1 (2.1)

50

2.1. Optimization of single-variable functions

and it is equal to a fraction r of the original interval length, b− a. This gives:

x2 − a = r(b− a) (2.2)

b− x1 = r(b− a) (2.3)

We shall assume now that the function has a smaller value at x1 than
x2, thus the new search interval will be [a, x2]. The demonstration is similar
for the case when f(x2) > f(x1). A point x3 is introduced within the new
interval so it is located at the same distance, d2, from x2 as x1 is from a:

d2 = x1 − a = x2 − x3 (2.4)

The ratio r must remain constant on each new interval, which means:

x1 − a = r(x2 − a) (2.5)

x2 − x3 = r(x2 − a) (2.6)

If x2 from (2.2) and x1 from (2.3) are replaced into (2.5), the value of r can
be determined as follows:

b− r(b− a)− a = r [a + r(b− a)− a] (2.7)

Rearranging, we get:
(b− a)(1− r − r2) = 0 (2.8)

and since the initial length of the interval is nonzero, the ratio r is one of the
roots of

1− r − r2 = 0 (2.9)

The solutions of (2.9) are:

r1 =
−1 +

√
5

2
= 0.618, r2 =

−1−√5
2

(2.10)

but only r1 obeys the initial requirement that 1
2 < r < 1.

The golden section search guarantees that after each new interval reduc-
tion the minimum will be bracketed in an interval having the length equal to
0.618 times the size of the preceding one.

51

Chapter 2. Numerical optimization

Algorithm 1 summarizes the technique for finding the minimum of a sin-
gle variable function f(x) within a given interval [a, b] with a tolerance ε.

Algorithm 1 Golden Section Search
Define function f(x)
Define boundaries a, b and tolerance ε
d = b− a
while b− a ≥ ε do

d ← d× 0.618
x1 ← b− d
x2 ← a + d
if f(x1) ≤ f(x2) then

b ← x2

else
a ← x1

end if
end while

2.1.2 Fibonacci Search

The Fibonacci search is an optimization method similar to the golden section
search. It is used to find the minimum or maximum of a unimodal function,
f(x), on a closed interval, [a, b], (Jeter, 1986; Pierre, 1986; Luenberger, 2003).

The Fibonacci search is the strategy that yields the smallest possible in-
terval of uncertainty in which the optimum lies, after n tests are completed,
(Pierre, 1986), or ensures the final interval is within the user-specified toler-
ance (ε) in a number n of iterations.

The method is based on the Fibonacci numbers which are defined by:

F0 = F1 = 1, Fk = Fk−1 + Fk−2, k = 2, 3, ... (2.11)

The first numbers of this sequence are 1, 1, 2, 3, 5, 8, 13, ...

In Figure 2.3 consider the procedure is at the iteration k. As in the golden
section search we shall determine the ratio rk. In this case rk is not constant
but varies with the number of iterations (Mathews, 2005).

The function f is tested at x1k and x2k and the interval will be reduced
around the minimum. Without loss of generality, assume the minimum of

52

2.1. Optimization of single-variable functions

Figure 2.3: Fibonacci search

the two values at x1k, thus the new search interval is [ak+1 = ak, bk+1 = x2k].
The point x1k is relabeled as x2,k+1.

At each iteration, the interval is reduced by a ratio 1
2 < rk < 1, so the

distance dk is calculated as:

dk = rk(bk − ak) = rkdk−1 (2.12)

and each new interval has the length dk.

We shall obtain a relation between rk and rk+1 starting with the observa-
tion that:

x2k − x1k = bk+1 − x2,k+1 (2.13)

From Figure 2.3, the left hand side of the relation (2.13) can be written as:

x2k − x1k = (bk − ak)− (x1k − ak)− (bk − x2k)

= (bk − ak)− (1− rk)(bk − ak)− (1− rk)(bk − ak)

= (bk − ak)(2rk − 1) (2.14)

and the right hand side:

bk+1 − x2,k+1 = (1− rk+1)(bk+1 − ak+1)

= (1− rk+1)rk(bk − ak) (2.15)

53

Chapter 2. Numerical optimization

The relations (2.13), (2.14) and (2.15) give:

2rk − 1 = (1− rk+1)rk (2.16)

or
rk+1 =

1− rk

rk
(2.17)

Now we introduce the Fibonacci numbers. Replace:

rk =
Fn−k

Fn−k+1
(2.18)

and we obtain:

rk+1 =
1− Fn−k

Fn−k+1

Fn−k

Fn−k+1

=
Fn−k−1

Fn−k
(2.19)

When k = 1, n− 1 the ratio rk will have the values:

r1 =
Fn−1

Fn

r2 =
Fn−2

Fn−1

... (2.20)

rn−2 =
F2

F3

rn−1 =
F1

F2
=

1
2

At the last step, n − 1, no new points can be added. The distance dn−1 =
dn−2rn−1 = dn−2/2, i.e., at step n − 1 the points x1,n−1 and x2,n−2 are equal
and:

rn =
F0

F1
=

1
1

= 1 (2.21)

The last interval obtained is dn = rn(bn − an) = rndn−1 = dn−1 and no other
steps are possible. It may be written as:

dn = rndn−1 =
F0

F1
dn−1 =

F0

F1

F1

F2
dn−1...

=
F0

F1

F1

F2
. . .

Fn−2

Fn−1

Fn−1

Fn
d1 =

F0

Fn
d0 =

1
Fn

d0 (2.22)

54

2.1. Optimization of single-variable functions

The distance d0 is the initial length of the interval of uncertainty, d0 = b− a.

If the minimizer has to be found with a tolerance of ε, then the length of
the last interval must be:

1
Fn

(b− a) < ε (2.23)

and the necessary number of iterations to reach the minimum with the toler-
ance ε is the smallest integer for which the following inequality holds:

Fn >
b− a

ε
(2.24)

Algorithm 2 summarizes the Fibonacci search.

Algorithm 2 Fibonacci Search
Define function f(x)
Define boundaries a, b and tolerance ε
Initialize the Fibonacci sequence F0 = F1 = 1
while Fn ≤ (b− a)/ε do

Calculate Fibonacci numbers Fn = Fn−1 + Fn−2

end while
d = b− a
for k=1:n do

d ← d× Fn−k/Fn−k+1

x1 ← b− d
x2 ← a + d
if f(x1) ≤ f(x2) then

b ← x2

else
a ← x1

end if
end for

If the number of iterations has to be determined from knowledge of the
tolerance ε, the Fibonacci numbers are calculated and stored until the inequal-
ity (2.24) becomes true.

If the number of iterations is given, a more convenient way to calculate
the Fibonacci numbers is be the use of explicit formula:

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5
2

)n]
(2.25)

55

Chapter 2. Numerical optimization

Both algorithms for single-variable function optimization presented
above can be applied when the function f is not differentiable. For a small
number of iterations the Fibonacci method is more efficient since it provides
the smallest final interval of uncertainty in a given number of steps. When
n is large, the methods are almost identical because the ratio Fn−k/Fn−k+1

converges to the golden ratio 0.618, when k approaches ∞.

2.2 Algorithms for unconstrained multivariable opti-
mization

2.2.1 Basic concepts

Over the last forty years many powerful algorithms have been developed for
unconstrained function optimization. All of these require an initial estimate
of the optimum point, denoted by x0. This is determined from knowledge
about the application. Beginning at x0, optimization algorithms generate
a sequence of iterates xk, k = 1, 2, ..., that terminate when either no more
progress can be made, or when a solution point has been approximated with
sufficient accuracy. The decision of moving from one point xk to the next is
taken based on the information about the function f at xk and finding a new
iterate xk+1 with a lower function value than xk, (Snyman, 2005; Nocedal and
Wright, 1999).

The algorithms terminate when one, or all, of the following situations
occur:

• two successive points are closer than a specified tolerance ε1:

‖xk+1 − xk‖ < ε1 (2.26)

• the function value calculated at two successive points does not vary
more than a given tolerance ε2:

|f(xk+1)− f(xk)| < ε2 (2.27)

56

2.2. Algorithms for unconstrained multivariable optimization

• the gradient of f is sufficiently close to 0:

‖∇f(xk)‖ < ε3 (2.28)

where ‖x‖ is the Euclidian norm of a vector x = [x1 x2 ... xn]T , given by:

‖x‖ =
√

x2
1 + x2

2 + ... + x2
n (2.29)

In general, there are two strategies from moving from one point to the
next: line search and trust region. An extensive description of algorithms from
both categories can be found in (Nocedal and Wright, 1999; Snyman, 2005;
Conn et al., 2000).

2.2.1.1 Line search algorithms

Searching along a line for a minimum point is a basic part of most nonlinear
programming algorithms. To initiate a line search with respect to a function
f , two vectors must be specified: the initial point x0 and the direction d in
which the search is to be made, (Luenberger, 2003).

x
1

x 2

f(x,y)=3x
1
2−sin(x

2
)

 x
0

 x
n

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 2.4: Sequence of steps for minimization of a two variable function

57

Chapter 2. Numerical optimization

Algorithms of this type calculate a new point xk+1 (Figure 2.4) from:

xk+1 = xk + skdk (2.30)

where xk and dk are the current point and the direction of search, respec-
tively, and sk is the step length which is determined by solving a one-
dimensional minimization problem:

F (sk) = f(xk + skdk) (2.31)

The line search is necessary for the following reason. If the step size is
very small, the value of the function decreases by a small amount. However,
large values of the step length may lead to the situation when the minimum
point is again not reached in a small number of iterations as shown in Fig-
ure 2.5. The function f is reduced at every step but with a very small amount
compared to the step length.

Figure 2.5: Large step size

The general structure of a line search descent method is given in Algo-
rithm 3. Various descent methods within this class differ according to the
way in which the descent directions are chosen. Another important consid-
eration is the method used for line search (Snyman, 2005).

A possibility to control the step size control is to implement a procedure
for minimization of F (sk) based on golden ratio or Fibonacci search as pre-
sented in previous sections.

Sophisticated algorithms for one-dimensional minimization are in gen-
eral not chosen because they would require a large number of function eval-

58

2.2. Algorithms for unconstrained multivariable optimization

Algorithm 3 General scheme for line search algorithms
Define function f(x) and tolerance ε
Select a starting point x0

repeat
Select a descent direction dk

Perform a one-dimensional line search in the direction dk, i.e.

min
sk

F (sk) = min
sk

f(xk + skdk)

or compute a step length that provides a decrease in the value of f (e.g.
using Armijo, Goldstein or Wolfe rules)
Compute

xk+1 = xk + skdk

until one of the conditions (2.26), (2.27) or (2.28) are true

uations and thus, a significant increase of the computation time. More prac-
tical strategies perform an inexact line search to identify a step length that
achieves adequate reductions in f . Some line search algorithms try out a
sequence of candidates for sk stopping to accept one of these values when
certain conditions are satisfied. A detailed description of Armijo, Goldstein
and Wolfe conditions is given in (Nocedal and Wright, 1999; Snyman, 2005;
Luenberger, 2003).

A basic backtracking procedure for line search is given in algorithm 4,
(Gould and Leyffer, 2002).

Algorithm 4 Backtracking line search
Select an initial step length s0 (e.g. s0 = 1) and set i = 0
repeat

i ← i + 1
Set si = τsi−1, where τ ∈ (0, 1), (e.g. τ = 1

2)
until f(xk + sidk) < f(xk)
Set sk = si

For a given direction dk, at the current point xk, this algorithm will de-
crease the step size until the value of f at the next point is smaller than f(xk).
It will prevent the step getting too small, but does not prevent large step sizes
relative to the decrease of f .

The Armijo condition is formulated such that it will provide a sufficient

59

Chapter 2. Numerical optimization

decrease in f . Consider the function F defined by (2.31). For a fixed α, 0 <

α < 1, the step sk is considered to be not too large and gives a sufficient
decrease of f if, (Luenberger, 2003; Gould and Leyffer, 2002):

F (sk) ≤ F (0) + αF ′(0)sk (2.32)

Condition (2.32) is illustrated in Figure 2.6.

Figure 2.6: Armijo condition

In terms of the original notation, the condition (2.32) is obtained from:

F (0) = f(xk + 0 · dk) = f(xk) (2.33)

F ′(sk) = dT
k∇f(xk + skdk) (2.34)

F ′(0) = dT
k∇f(xk) (2.35)

F (0) + αF ′(0)sk = f(xk) + αdT
k∇f(xk)sk (2.36)

and (2.32) becomes:

f(xk + skdk) ≤ f(xk) + αdT
k∇f(xk)sk (2.37)

A backtracking-Armijo algorithm is given below.

Another popular approaches to determine an appropriate step size are
Goldstein and Wolfe tests, (Luenberger, 2003; Nocedal and Wright, 1999).

The Goldstein test for the step length requires that for an α selected such
that 0 < α < 1

2 :

f(xk) + (1−α)dT
k∇f(xk)sk ≤ f(xk + skdk) ≤ f(xk) + αdT

k∇f(xk)sk (2.38)

60

2.2. Algorithms for unconstrained multivariable optimization

Algorithm 5 Backtracking Armijo
Select an initial step length s0 (e.g. s0 = 1), α ∈ (0, 1) and set i = 0
repeat

i ← i + 1
Set si = τsi−1, where τ ∈ (0, 1), (e.g. τ = 1

2)
until f(xk + sidk) ≤ f(xk) + αdT

k∇f(xk)si

Set sk = si

The Wolfe test requires an additional condition next to relation (2.37) to be
satisfied:

f(xk + skdk) ≤ f(xk) + α1dT
k∇f(xk)sk (2.39)

dT
k∇f(xk + skdk) ≥ α2dT

k∇f(xk) (2.40)

where 0 < α1 < α2 < 1.

2.2.1.2 Trust region methods

Another strategy approximates the function f to be minimized, with a model
function, mk in a neighborhood, N , named the trust region, around the cur-
rent point xk. The subproblem which is to be solved now is minimizing the
model function over N . If the solution does not produce a sufficient decrease
of f , the trust region is shrunk around xk. The model function mk is usually
a quadratic form obtained from a two-term Taylor series approximation.

The general algorithm can be summarized as:

• Choose a maximum distance from the current point - the trust region
radius

• Find a direction and a step that produce the best improvement possible
in this region

• If the step is unsatisfactory, reduce the size of the trust region and start
again

Algorithms using trust region strategy are discussed in detail in (Nocedal
and Wright, 1999; Conn et al., 2000).

61

Chapter 2. Numerical optimization

2.2.2 Newton methods

2.2.2.1 The algorithm

Newtons method (known also as Newton-Raphson method), with all its vari-
ations, is one of the most important methods in numerical unconstrained op-
timization. Basically, it is a numerical procedure for finding the roots of a
real-valued function. It can also be used to find local extrema of functions
using the necessary condition for a point to be stationary in unconstrained
optimization.

Let f : Rn → R be a multivariable function to be minimized or maxi-
mized. A point x0 is a stationary point of f if the gradient calculated at this
location is zero, i.e., ∇f(x0) = 0. Thus, the Newton method can be applied
to find the roots of ∇f(x).

Assume that the function f is twice differentiable and the Hessian H(x)
is continuous. The elements of H(x) are the second derivatives of the objec-
tive function Hij = ∂2f/∂xi∂xj . In case the Hessian is not available and its
computation is difficult or not possible, other methods must be applied.

The Newton method for the minimization of f(x) can be derived assum-
ing that, given xk, the next point xk+1 is obtained by minimizing a quadratic
approximation of f . The Taylor expansion of f(xk+1) around xk is:

f(xk+1) ≈ f(xk) + (xk+1 − xk)T∇f(xk) +
1
2
(xk+1 − xk)TH(xk)(xk+1 − xk)

(2.41)
The stationary point of (2.41) is computed from setting the gradient of
f(xk+1) equal to zero:

∇f(xk+1) = ∇f(xk) + H(xk)(xk+1 − xk) = 0 (2.42)

From (2.42):
xk+1 = xk −H(xk)−1∇f(xk) (2.43)

which is the iterative scheme of the method.
For a multivariable function f(x) the Newton method can be described as

in Algorithm 6.
The stop criterion for this algorithm can be one or more of the condi-

tions (2.26), (2.27) or (2.28), or, resulting from the same relations, the norm of

62

2.2. Algorithms for unconstrained multivariable optimization

[H(xk)]−1∇f(xk) has to be sufficiently small:

||H(xk)−1∇f(xk)|| ≤ ε (2.44)

Algorithm 6 Newton Search Method
Define f(x) and a tolerance ε
Compute the gradient ∇f(x)
Compute the Hessian matrix H(x)
Choose an initial point x0

Set k = 0
while ||H(xk)−1∇f(xk)|| > ε do

Calculate a new point xk+1 = xk −H(xk)−1∇f(xk)
Set k ← k + 1

end while

Note that for a single variable function f(x) the iterative scheme can be
written as:

xk+1 = xk − f ′(xk)
f ′′(xk)

(2.45)

2.2.2.2 Geometrical interpretation

The method may be introduced by a geometrical interpretation for a single
variable function f(x). Suppose we want to find a root of some differentiable
function y = g(x). In case g(x) = f ′(x), the problem of finding a root of g(x)
is the same as finding a stationary point for f(x).

As shown in Figure 2.7 we choose an initial point x0. Consider the tangent
line to the graph of g at the point (x0, g(x0)).

Suppose this tangent line crosses the x-axis at x = x1. A new tangent
line to the graph of g in x1 will intersect the axis at x = x2. If this process is
repeated, the points xk get closer to a root of g.

We will derive a formula for calculating xk+1 in terms of xk. The tangent
line at (xk, g(xk)) is:

g(x)− g(xk) = g′(xk)(x− xk) (2.46)

To obtain the point of intersection with the x-axis we set g(x) = 0 and solve

63

Chapter 2. Numerical optimization

Figure 2.7: Newton method

for x:
0− g(xk) = g′(xk)(x− xk) (2.47)

x = xk − g(xk)
g′(xk)

(2.48)

Let us denote the new point by xk+1. The iterative scheme is:

xk+1 = xk − g(xk)
g′(xk)

(2.49)

When the function g is the first derivative of a function f , g(x) = f ′(x),
the relation (2.49) can be written as:

xk+1 = xk − f ′(xk)
f ′′(xk)

(2.50)

2.2.2.3 Implementation aspects

If the function f(x) = f(x1, x2, ...xn) is quadratic, i.e., it can be written in the
form

f(x) =
1
2
xTAx + bTx + c (2.51)

where A is a symmetric n × n matrix, b is an n × 1 vector and c a scalar,
the relation (2.41) is not an approximation and the stationary point can be
determined in one step.

The gradient of f is obtained as:

∇f(x) = Ax + b (2.52)

64

2.2. Algorithms for unconstrained multivariable optimization

and the solution of the optimization problem is:

x∗ = −A−1b (2.53)

The Newton method will converge to the exact stationary point in one
step, no matter which is the initial point selected.

Example 2.1 Consider the function f(x1, x2) = x2
1 + 2x2

2 + x1 + 7
It can be written in the form (2.51) as:

f(x1, x1) =
1
2
[x1 x2]

[
2 0
0 4

][
x1

x2

]
+ [1 0]

[
x1

x2

]
+ 7 (2.54)

Let x0 = [x10 x20]T be the initial point of the Newton algorithm. The gradient
and Hessian matrix for function f are:

∇f(x1, x2) =

[
2x1 + 1

4x2

]
, H(x1, x2) =

[
2 0
0 4

]
(2.55)

The next point is calculated from:

x1 = x0 −H(x0)−1∇f(x0) (2.56)

or: [
x11

x12

]
=

[
x10

x10

]
−

[
1
2 0
0 1

4

][
2x10 + 1

4x20

]
=

[
−1

2

0

]
(2.57)

Notice that the gradient calculated at this new point [−1
2 0] is zero, thus the

condition (2.44) is satisfied and the algorithm stops here.

If the function is not quadratic the selection of the initial point is very
important for the location of the extremum found by the Newton algorithm.

The convergence towards a local extremum is very fast, but the method
does not return the type of the stationary point unless the second order con-
ditions are verified at the solution.

Since the calculus of the second order derivatives and the Hessian matrix
is a requirement for the implementation of the Newton method, the second
order conditions can be easily examined.

65

Chapter 2. Numerical optimization

Example 2.2 Consider an univariate function f(x) = x4 − x2 for which we shall
implement a Newton method to find local extrema. The first and second derivatives
can be calculated symbolically:

f ′(x) = 4x3 − 2x (2.58)

f ′′(x) = 12x2 − 2 (2.59)

A starting point x0 and a tolerance (i.e. ε = 10−5) must be selected. The next
points are calculated according to the iterative scheme:

xk+1 = xk − f ′(xk)
f ′′(xk)

(2.60)

Figures 2.8 and 2.9 illustrate the result of the Newton method for different values
of the initial point x0, the extremum obtained x∗ and the type of extremum deter-
mined directly from the computation of the second derivative at x∗.

The advantages of Newton method include:

• The method is powerful and easy to implement

• It will converge to a local extremum from any sufficiently close starting
value

However, the method has some drawbacks:

• The method requires the knowledge of the gradient and the Hessian,
which is not always possible. For large problems, determining the Hes-
sian matrix by the method of finite-differences is costly in terms of func-
tion evaluations.

• There is no guarantee of convergence unless the initial point is reason-
ably close to the extremum, thus the global convergence properties are
poor.

2.2.2.4 Modified Newton method

The classical Newton method requires calculation of the Hessian at each it-
eration. Moreover, the matrix has to be inverted which may be inconvenient

66

2.2. Algorithms for unconstrained multivariable optimization

−1 −0.5 0 0.5 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

x

f(
x)

start

stop

Figure 2.8:

x0 = −0.9
x∗ = −0.707

f ′′(x∗) = 4 > 0

x∗ is a local minimum

−1 −0.5 0 0.5 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

x

f(
x)

start

stop

Figure 2.9:

x0 = −0.3
x∗ = 0

f ′′(x∗) = −2 < 0

x∗ is a local maximum

for large problems. A modified Newton method uses the Hessian calculated
at the initial point. The convergence of the algorithm is still good for starting
points close to extrema but the convergence is linear instead of quadratic (as
in the case of the classical method).

Algorithm 7 describes the procedure.

67

Chapter 2. Numerical optimization

Algorithm 7 Modified Newton method
Define f(x) and a tolerance ε
Choose an initial point x0

Compute the gradient ∇f(x)
Compute and evaluate the Hessian at the initial point, H(x0)
Compute the inverse of the Hessian, H(x0)−1

while ||H(x0)−1∇f(xk)|| > ε do
Calculate a new point xk+1 = xk −H(x0)−1∇f(xk)
Set k ← k + 1

end while

2.2.3 Gradient methods

2.2.3.1 Directional derivative and the gradient

The directional derivative ∇uf(x0, y0) is the rate at which the function f(x,y)
changes at a point (x0,y0) in the direction u, (Weisstein, 2004a). It is a vector
form of the usual derivative, and, when u is a unit vector, can be defined as:

∇uf = ∇f · u (2.61)

where ∇f is the gradient of function f and (·) is the scalar (or inner) product
of vectors.

It generalizes the notion of a partial derivative, in which the direction is
always taken parallel to one of the coordinate axes. The slopes in the direction
of axes (x1 and x2 in Figure 2.10) are the partial derivatives, and the slopes in
other directions (e.g. u) are the directional derivatives.

The inner product from the definition of the directional derivative can be
expressed as:

∇uf = ∇f · u = ‖∇f‖‖u‖ cos θ = ‖∇f‖ cos θ (2.62)

where ‖∇f‖ and ‖u‖ are the norms of the corresponding vectors and θ is the
angle between them (Figure 2.11). Because u is a unit vector, the norm is
equal to one.

From (2.62) we obtain that:

• the largest possible value of ∇uf is obtained when cos θ assumes its

68

2.2. Algorithms for unconstrained multivariable optimization

0

1

2

3 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

x
2

x
1

f(
x 1,x

2)

direction of x
2

direction of u

direction of x
1

Figure 2.10: Directions of x1, x2 and u

Figure 2.11: Inner
product of vectors ∇f
and u

maximum value of 1 at θ = 0, i.e. the vector u points in the direction
of the gradient ∇f . Thus, the directional derivative will be maximized
in the direction of the gradient and this maximum value will be the
magnitude of the gradient (‖∇f‖).

• if θ = π, the cosine has its smallest value of −1 and the unit vec-
tor u points in the opposite direction of the gradient, −∇f . The di-
rectional derivative will be minimized in the direction of −∇f and
∇uf = −‖∇f‖.

In other words, the function f will increase most rapidly (or it has the
greatest positive rate of change) in the direction of the gradient and will de-
crease most rapidly in the direction of −∇f .

Example 2.3 For example, consider a function of two variables:

f(x1, x2) = sin(x1) · cos(0.8x2) (2.63)

The gradient of f represented as a vector field is shown in Figure2.12. It points
in the direction of maximum increase of the function.

69

Chapter 2. Numerical optimization

1
2

3
4

5
6

0

2

4

6
−1

−0.5

0

0.5

1

x
1

x
2

f(
x 1,x

2)

x
1

x 2

1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 2.12: Direction of gradient

2.2.3.2 The method of steepest descent

The method of steepest descent is an algorithm for finding a local minimum of a
function using the gradient. It belongs to a category named first order methods
because they employ first order partial derivatives.

As explained in section 2.2.3.1, the gradient of a function f is a vector that
points to the direction of maximum increase in the value of f . Therefore, go-
ing towards the opposite direction (given by −∇f)) means moving towards
the minimum.

If a starting point x0 is selected in the neighborhood of a local minimum,
the method moves in successive points, from xk to xk+1 in the direction of the
local downhill gradient (i.e. along the line extended from xk in the direction
opposite to the gradient, −∇f(xk)).

Another version of this algorithm, known as steepest ascent, will approach
a local maximum if the search is performed in the direction of ∇f(xk).

The search starts at a point x0 and then slides down the gradient accord-
ing to the iterative scheme:

xk+1 = xk − sk∇f(xk) (2.64)

where sk is the step size for iteration k.

A usual implementation of the scheme uses the normalized gradient instead

70

2.2. Algorithms for unconstrained multivariable optimization

of ∇f(xk):

xk+1 = xk − sk
∇f(xk)
‖∇f(xk)‖ (2.65)

In this case, the distance between xk and xk+1 is exactly the step length sk.
The next iterate is computed in the direction of the negative gradient at

this new point xk+1 and we obtain a zig-zag pattern as illustrated in Fig-
ure 2.13. Iterations continue until the extremum has been determined within
a chosen accuracy ε. The convergence criterion may be one of those given by
the relations (2.26), (2.27) or (2.28).

Figure 2.13: A path of steepest descent

The step size can be selected at the beginning of the procedure and fixed
for all iterations. In this case it is possible to obtain oscillations around the
local minimum and a very large number of iterations until the procedure will
eventually converge to a solution.

Better implementations use a line search procedure to determine a step
size that ensures a smaller value of the function at the next iteration, or min-
imizes f(xk − sk∇f(xk)) with respect to sk. This is often referred to as the
optimal gradient method.

Alternatively, if an exact line search is laborious, the value of sk, can be
modified during the iterations, if necessary, making sure that one of Armijo,
Goldstein or Wolfe conditions are satisfied.

Algorithm 8 describes the procedure.

Quadratic functions

71

Chapter 2. Numerical optimization

Algorithm 8 Steepest Descent
Define function f(x)
Calculate the gradient ∇f(x)
Select an initial point x0

Select a tolerance ε
Set k = 0
repeat

Perform a line search to determine the step length sk that minimizes the
function in the direction of minus gradient:

min
sk>0

f

(
xk − sk

∇f(xk)
‖∇f(xk)‖

)

Calculate a new point:

xk+1 ← xk − sk
∇f(xk)
‖∇f(xk)‖

Set k ← k + 1
until ‖∇f(xk)‖ < ε (or ‖xk+1 − xk‖ < ε or |f(xk+1)− f(xk)| < ε)

In the particular case when the function to be minimized is quadratic, we
are able to determine explicitly the optimal step size that minimizes f(xk −
sk∇f(xk)). Consider a function having the form:

f(x) =
1
2
xTQx + bTx + c (2.66)

where the n×n matrix Q is symmetric and positive definite, b is a n×1 vector
and c is a scalar.

The gradient of f is obtained as:

∇f(x) = Qx + b (2.67)

Notice also that the matrix Q is the Hessian of f because it can be obtained
as the second derivative of f with respect to the vector x.

We shall determine the step sk that minimizes f(xk − sk∇f(xk)) for a

72

2.2. Algorithms for unconstrained multivariable optimization

point xk.

f(xk − sk∇f(xk)) =
1
2
(xk − sk∇f(xk))TQ(xk − sk∇f(xk))

+ bT (xk − sk∇f(xk)) + c (2.68)

When xk is given, the function f(xk − sk∇f(xk)) depends only on sk and
the derivative is:

df

dsk
= −∇f(xk)TQ(xk − sk∇f(xk))− bT∇f(xk)

= −∇f(xk)TQxk +∇f(xk)TQsk∇f(xk)− bT∇f(xk) (2.69)

Because bT∇f(xk) = ∇f(xk)Tb the relation (2.69) becomes:

df

dsk
= −∇f(xk)TQxk +∇f(xk)TQsk∇f(xk)−∇f(xk)Tb

= sk∇f(xk)TQ∇f(xk)−∇f(xk)T (Qxk + b)

= sk∇f(xk)TQ∇f(xk)−∇f(xk)T∇f(xk) (2.70)

where the last term in the right hand side was obtained using (2.67). If we set
the derivative df/dsk equal to zero, the optimal step is given by:

sk =
∇f(xk)T∇f(xk)
∇f(xk)TQ∇f(xk)

(2.71)

Thus, for quadratic functions, the method does not require a line search pro-
cedure and the steepest descent iteration is given by:

xk+1 = xk −
(∇f(xk)T∇f(xk)
∇f(xk)TQ∇f(xk)

)
∇f(xk) (2.72)

The advantages of the steepest descent method include:

• It is simple, easy to understand and apply and iterations are fast be-
cause it requires only the gradient. The Hessian or its inverse are not
needed.

• It is stable and improves the solution at each step. If the minimum

73

Chapter 2. Numerical optimization

points exist, the method will locate them, but a small number of itera-
tions is not guaranteed.

The method has some drawbacks:

• It may have a slow convergence, especially in cases when the curvature
in different directions is very different.

• Line search may be time consuming and using a fixed step can give
poor results.

• It is very much dependent on a good selection of the starting point and
may be used when there is an indication of where the minimum is.

2.2.4 Conjugate gradient methods

The method of gradients often has slow convergence especially when the
problem is poorly scaled i.e. when the contours are extremely elongated, due
to the fact that it enforces successive orthogonal search directions (Snyman,
2005).

A basic characteristic of conjugate directions methods is to find the mini-
mum of a quadratic function in a finite number of steps. These methods have
been introduced for the solution of systems of linear equations and have later
been extended to the solution of unconstrained optimization problems for
non-quadratic functions (Astolfi, 2001).

Two vectors di, dj ∈ Rn are said to be orthogonal if the scalar product
dT

i dj = 0.
Two vectors di, dj ∈ Rn are Q-orthogonal or conjugate with respect to a

symmetric positive definite matrix Q if:

dT
i Qdj = 0 (2.73)

This can be viewed as a generalization of orthogonality, for which Q is the
unity matrix.

Consider the function f(x1, x2) represented by the elliptical contour lines
in Figure 2.14a) and the vectors d0 and d1. If the x1 − x2 space is “stretched”
until the ellipses become circles and the vectors d0 and d1 will appear as per-
pendicular, they are Q-orthogonal.

74

2.2. Algorithms for unconstrained multivariable optimization

In Figure 2.14a), the method of gradients will choose g1 as a search direc-
tion, which is perpendicular to d0. The method of conjugate gradients will
choose d1 that points to the minimum located in the center of the ellipse.

x
1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

d
0

d
0

d
1

b)

d
1

g
1

P

Figure 2.14: Q-orthogonal (a) and orthogonal vectors (b)

Detailed demonstrations of the conjugate gradient method is given in
(Nocedal and Wright, 1999; Astolfi, 2001; Snyman, 2005). A summary and
the algorithm of the method is given below.

The successive points of the iterative procedure, converging to a mini-
mum of the function f(x), where x ∈ R, are calculated according to the rela-
tion:

xk+1 = xk + skdk (2.74)

The step sk is calculated by an exact or approximate line search method and
dk, k = 0, n are the mutually conjugate search directions.

Starting at an initial point x0, the first direction of move is minus gradient:

d0 = −∇f(x0) (2.75)

The next directions are chosen so that

dk+1 = −∇f(xk+1) + βkdk (2.76)

where the coefficient βk is calculated by one of the formulas named Fletcher-
Reeves (FR), Polak-Ribiere (PR), or Hestenes-Stiefel (HS) after their develop-

75

Chapter 2. Numerical optimization

ers.

Fletcher-Reeves formula:

βk =
∇f(xk+1)T∇f(xk+1)
∇f(xk)T∇f(xk)

(2.77)

Polak-Ribière formula:

βk =
∇f(xk+1)T (∇f(xk+1)−∇f(xk))

∇f(xk)T∇f(xk)
(2.78)

Hestenes-Stiefel formula:

βk =
∇f(xk+1)T (∇f(xk+1)−∇f(xk))

dT
k (∇f(xk+1)−∇f(xk))

(2.79)

Algorithm 9 describes the procedure.

Algorithm 9 Conjugate Gradient
Define function f(x)
Set k = 0 and select a starting point x0

Compute the first direction d0 = −∇f(x0)
repeat

Perform a one-dimensional line search in the direction dk, i.e.

min
sk

F (sk) = min
sk

f(xk + skdk)

Compute
xk+1 = xk + skdk

Compute βk using one of FR (2.77), PR (2.78) or HS (2.79) formulas.
Compute the new direction

dk+1 = −∇f(xk+1) + βkdk

Set k ← k + 1
until convergence criterion is satisfied.

• If the function f is quadratic, i.e. can be written in the form:

f(x) =
1
2
xTQx + bTx + c (2.80)

76

2.2. Algorithms for unconstrained multivariable optimization

the step length can be determined from:

sk = −∇f(xk)Tdk

dT
k Qdk

(2.81)

The demonstration is similar to the computations in (2.67)-(2.71).

• For quadratic functions the method converges in n iterations, where n

is the number of variables.

• A practical issue regarding the implementation of this method relates to
the accuracy of the line search method. Even small deviations can cause
the search vectors to lose Q-orthogonality, and, in this case, a number
of iterations greater than n will be necessary for locating the minimum.

• The loss of conjugacy that results from non-quadratic terms can be
avoided if the procedure is modified and the algorithm restarted in cy-
cles where the first search direction is the steepest descent and the initial
point of each cycle is the value xn, obtained after n iterations, (Snyman,
2005).

Example 2.4 We compare the performance of conjugate gradient algorithm to steep-
est descent when minimizing the function:

f(x1, x2) = x2
1 + 4x2

2 + 2x1x2 (2.82)

starting from an initial point x0 = [−2.5 0]T .

The function is quadratic and can be written in the form:

f(x1, x2) =
1
2
[x1 x2]

[
2 2
2 8

] [
x1

x2

]
=

1
2
xTQx (2.83)

and the gradient vector is computed as:

∇f(x) =

[
2x1 + 2x2

2x1 + 8x2

]
(2.84)

77

Chapter 2. Numerical optimization

An initial direction is set as minus the gradient computed at x0:

d0 = −∇f(x0) = −∇f(−2.5, 0) = −
[

2 · (−2.5) + 2 · 0
2 · (−2.5) + 8 · 0

]
=

[
5
5

]
(2.85)

The optimal step length for quadratic functions, given by (2.81) is:

s0 = −∇f(x0)Td0

dT
0 Qd0

= −
[−5 − 5]

[
5
5

]

[5 5]

[
2 2
2 8

][
5
5

] = 0.1429 (2.86)

A new point is calculated using d0 and s0:

x1 = x0 + s0d0 =

[
−2.5

0

]
+ 0.1429

[
5
5

]
=

[
−1.7857
0.7143

]
(2.87)

for which the gradient is

∇f(x1) =

[
−2.1429
2.1429

]
(2.88)

We compute the next iterate using the Fletcher-Reeves formula to determine the
coefficients βk:

β0 =
∇f(x1)T∇f(x1)
∇f(x0)T∇f(x0)

=

[−2.1429 2.1429]

[
−2.1429
2.1429

]

[−5 − 5]

[
−5
−5

] = 0.1837 (2.89)

The new direction, Q-orthogonal or conjugate to d0, is given by:

d1 = −∇f(x1) + β0d0 = −
[
−2.1429
2.1429

]
+ 0.1837

[
5
5

]
=

[
3.0612
−1.2245

]
,

(2.90)

78

2.2. Algorithms for unconstrained multivariable optimization

the optimal step length for this iteration is:

s1 = −∇f(x1)Td1

dT
1 Qd1

= 0.5833 (2.91)

and finally, the new point:

x2 = x1 + s1d1 =

[
−1.7857
0.7143

]
+ 0.5833

[
3.0612
−1.2245

]
=

[
0
0

]
(2.92)

is the minimizer of f(x1, x2). It was obtained in n = 2 iterations. Figure 2.15
illustrates the contour lines of f and the location of the points computed at each step.

For comparison, the steepest descent method as presented in Algorithm 8 has
been implemented for the minimization of the same function starting from the same
initial point. The step length at each iteration has been computed using (2.71).

As seen in Figure 2.16, the search path is composed of successive orthogonal
directions that slowly converge to the minimum located at [0 0].

x
1

x 2

Conjugate gradient

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

endstart

Figure 2.15: Conjugate gradient algorithm for minimization of f(x1, x2)

2.2.5 Quasi-Newton methods

An important aspect of gradient methods is that the second derivatives of
the function to be minimized are not required. On the other hand, the New-
ton method assumes that the function is approximately quadratic around

79

Chapter 2. Numerical optimization

x
1

x 2

Steepest descent

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

start

Figure 2.16: Steepest descent algorithm for minimization of f(x1, x2)

the minimum and uses the gradient and the Hessian to locate the stationary
point.

Quasi-Newton methods also known as variable metric methods build up an
approximation of the inverse Hessian using successive gradient vectors. We
shall introduce the methods without demonstration. A detailed analysis of
Quasi-Newton methods is given by Nocedal and Wright (1999) and Luen-
berger (2003).

The problem to be solved is the minimization of a function f(x), where
x ∈ Rn. The gradient is denoted ∇f(x) and the Hessian is H(x).

Starting at an initial point x0, a general relation to calculate a new iterate
for the algorithm of a modified Newton method is:

xk+1 = xk − skBk∇f(xk) (2.93)

• If Bk = I, the resulting method is steepest descent

• If sk = 1 and Bk = H−1(xk), the relation (2.93) is the classical Newton
method

• If sk = 1 and Bk = H−1(x0), the relation (2.93) is the modified Newton
method

• If the matrix H(x) and its inverse are difficult or impossible to compute,

80

2.2. Algorithms for unconstrained multivariable optimization

quasi-Newton methods will determine an approximation of the inverse
of the Hessian, as presented below.

Note that dk = −Bk∇f(xk) is a vector giving the search direction and sk

is the step length.

Quasi-Newton methods use the general algorithm (2.93), where the ma-
trix Bk is initially chosen as the unit matrix (B0 = I) and updated at each
iteration according to the relation:

Bk+1 = Bk + Bu
k (2.94)

The update matrix Bu
k can be calculated using one of the widely used

formulas: Davidon-Fletcher-Powell or Broyden-Fletcher-Goldfarb-Shanno.
Both of them require the value of the point and the gradient at the current
and previous iteration:

∆xk = xk+1 − xk (2.95)

∆Gk = ∇f(xk+1)−∇f(xk) (2.96)

The Davidon-Fletcher-Powell (DFP) update formula is:

Bk+1 = Bk + Bu
k = Bk +

∆xk∆xT
k

∆xT
k ∆Gk

− Bk∆Gk(Bk∆Gk)T

∆GT
k Bk∆Gk

(2.97)

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update relation is given by:

Bk+1 = Bk + Bu
k = Bk +

∆Gk∆GT
k

∆GT
k ∆xk

− Bk∆xk(Bk∆xk)T

∆xT
k Bk∆xk

(2.98)

The general procedure is described in Algorithm 10.

• Numerical experiments have shown that, although more complicated,
BFGS’s performance is superior to DFP. Hence, BFGS is often preferred
over DFP.

• An important property of DFP and BFGS formulas is that if Bk is posi-
tive definite and the step size sk is chosen to satisfy the Wolfe conditions
then Bk+1 is also positive definite.

81

Chapter 2. Numerical optimization

Algorithm 10 Quasi-Newton
Define f(x) and a tolerance ε
Compute the gradient ∇f(x)
Choose an initial point x0

Set k = 0 and B0 = I
repeat

Compute the search direction:

dk = −Bk∇f(xk)

Compute the step length sk by a line search procedure that minimizes
the function in the direction dk:

min
sk>0

f(xk + skdk)

Compute a new point xk+1 = xk + skdk = xk − skBk∇f(xk)
Compute the differences:

∆xk = xk+1 − xk

∆Gk = ∇f(xk+1)−∇f(xk)

Update the matrix Bk+1 according to the DFP (2.97) or BFGS (2.98) for-
mulas:

Bk+1 = Bk + Bu
k

Set k ← k + 1
until one of the conditions (2.26), (2.27) or (2.28) are true

• For a quadratic objective function, DFP method simultaneously gener-
ates the directions of the conjugate gradient method while constructing
the inverse Hessian Bk.

2.2.6 Algorithms for minimization without derivatives

In situations when function derivatives are difficult or expensive to compute,
the function is not very smooth or it is too noisy, methods which rely exclu-
sively on the values of the objective function have to be employed. This type
of algorithms do not calculate or estimate derivatives at any point and are
identified as zero-order methods or derivative-free methods.

Although the number of methods that require only function evaluations

82

2.2. Algorithms for unconstrained multivariable optimization

and no derivative computation is very large, we present only the widely used
Nelder-Mead and Rosenbrock method as examples of algorithms in this cat-
egory.

2.2.6.1 Nelder-Mead method

The Nelder-Mead method (or downhill simplex method, or amoeba method) solves
unconstrained optimization problems of minimizing a nonlinear function f :
Rn → R. It does not require any derivative information, which makes it
suitable for optimization of non-smooth and even discontinuous functions,
(Press et al., 2007; Mathews and Fink, 2004). The first simplex-based direct
search method was proposed by Spendley, Hext and Himsworth in 1962. In
1965, Nelder and Mead modified the original method and their approach
gained popularity very quickly.

A simplex in Rn is defined as the convex hull of n + 1 vertices,
V1, V2, . . . Vn ∈ Rn. For example, a simplex in R2 is a triangle, and a simplex
in R3 is a tetrahedron (Figures 2.17, 2.18). The method compares the objective
function values at the N + 1 vertices and moves towards the optimal point
iteratively.

Figure 2.17: A simplex in R2 Figure 2.18: A simplex in R3

The algorithm will be presented as given in (Mathews and Fink, 2004) for
a function of two variables, f : R2 → R, f = f(x, y).

The initial triangle. Start with a triangle ∆V1V2V3, (Figure 2.17). The func-
tion f(x, y) is evaluated at each of the three vertices having the coor-

83

Chapter 2. Numerical optimization

dinates: V1(x1, y1), V2(x2, y2), V3(x3, y3). The subscripts are then re-
ordered so that f(x1, y1) < f(x2, y2) < f(x3, y3). The vertex where the
function has the best value (the smallest out of three in case of a mini-
mization problem) is denoted by B, the second best is denoted by G and
the one where the function has its worst value by W . After reordering,
these points will have the coordinates:

B = (x1, y1), G = (x2, y2), W = (x3, y3) (2.99)

Figure 2.19 shows an example of an initial triangle and the notations B,
G and W according to the function value at the vertices.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

2

xy W

B
G

Figure 2.19: Example of an initial triangle and the vertices B, G, W

Midpoint of the BG side. The procedure uses the midpoint M , of the line
segment joining B and G (Figure 2.20). Its coordinates are obtained as:

xM =
x1 + x2

2
, yM =

y1 + y2

2
(2.100)

or, using vector notation:

M =
B + G

2
=

(
x1 + x2

2
,
y1 + y2

2

)
(2.101)

84

2.2. Algorithms for unconstrained multivariable optimization

Figure 2.20: The triangle BGW , midpoint M and reflected point R

Reflection. If we move from vertex W towards B or G, along the sides, the
function decreases (because B corresponds to the smallest value), or,
smaller values of f lie away from W , on the opposite side of the line
between B and G. A point R is determined by “reflecting” the triangle
through the BG side. It is located at the same distance (d) from M , as W

is to M , along the extended line that starts at W and passes through the
midpoint of BG, (Figure 2.20). The vector formula for the coordinates
of R is:

R = M + (M −W) = 2M −W (2.102)

Expansion. If the function value at R is smaller than the function value at W

then we have moved in the correct direction toward the minimum. To
accelerate the search, we extend the line segment through M and R to
the point E with an additional distance d, (Figure 2.21), and we obtain
an expanded triangle ∆BGE. If the function value at E is less than the
function value at R, then we have found a better vertex than R. The
vector formula for E is:

E = R + (R−M) = 2R−M (2.103)

Contraction. If the function values at R and W are the same, another point
must be tested. Perhaps the function is smaller at M but we cannot

85

Chapter 2. Numerical optimization

Figure 2.21: The triangle BGW and point R and extended point E

replace W with M because we need a triangle. Consider the two mid-
points C1 and C2 of the line segments WM and MR respectively (Fig-
ure 2.22). The point with the smaller function value is called C and the
new triangle is ∆BGC.

Figure 2.22: The contraction points

The points C1 and C2 have the coordinates:

C1 = W +
M −W

2
=

W + M

2
, C2 = R− R−M

2
=

R + M

2
(2.104)

Shrinking. If the function value at C is not less than the function value at W ,
the points G and W must be shrunk toward B. The point G is replaced
by M and W is replaced by S, which is the midpoint of the line segment

86

2.2. Algorithms for unconstrained multivariable optimization

joining B and W (Figure 2.23). Similar to M , the midpoint S can be
calculated from:

S =
B + W

2
(2.105)

Figure 2.23: Shrinking toward B

The algorithm must terminate in a finite number of steps or iterations.
The stop criterion can be one or all of the following:

• The simplex becomes sufficiently small, or the vertices are within a
given tolerance ε

• The function does not change for successive iterations.

• The number of iterations or function evaluations exceeds a maximum
value allowed.

For the two-dimensional case, the details are summarized in Algo-
rithm 11, (Mathews and Fink, 2004).

Example 2.5 Use the Nelder-Mead algorithm to find the minimum of:

f(x, y) = (x− 10)2 + (y − 10)2 (2.106)

We calculate the first steps and illustrate them graphically.

87

Chapter 2. Numerical optimization

Algorithm 11 Nelder-Mead method
Define function f(x, y) and tolerance ε
Select 3 initial vertices V1, V2, V3

while stop criterion not fulfilled do
Compute f(V1), f(V2), f(V3) and set the labels B, G, W
Compute M = (B + G)/2 and R = 2M −W
if f(R) < f(W) then

Compute E=2R-M, f(E)
if f(E) < f(R) then

Replace W with E
else

Replace W with R
end if

else
Compute C1 and C2 and choose C
if f(C) < f(W) then

Replace W with C
else

Compute S and f(S)
Replace W with S
Replace G with M

end if
end if

end while

88

2.2. Algorithms for unconstrained multivariable optimization

First iteration Start with three vertices conveniently chosen at the origin and on
the axes (Figure 2.24):

V1 = (0, 0), V2 = (2, 0), V3 = (0, 6) (2.107)

and calculate the function values f(x, y) at these points:

f(0, 0) = 200, f(2, 0) = 164, f(0, 6) = 116 (2.108)

Figure 2.24: The first sequence of triangles

Since f(0, 6) < f(2, 0) < f(0, 0), the vertices will be assigned the names:

B = (0, 6), G = (2, 0), W = (0, 0) (2.109)

The midpoint of BG is:

M =
B + G

2
= (1, 3) (2.110)

89

Chapter 2. Numerical optimization

and the reflected point:

R = 2M −W = (2, 6) (2.111)

The function value at R, f(R) = f(2, 6) = 80 < f(G) < f(B) and the
extended point E will be calculated from:

E = 2R−M = (3, 9) (2.112)

The new triangle is ∆BGE.

Second iteration Since the function value at E is f(3, 9) = 50 < f(G) < f(B),
the vertices labels for the current stage are (Figure 2.25):

B = (3, 9), G = (0, 6), W = (2, 0) (2.113)

The new midpoint of BG and the reflected point R are:

Figure 2.25: The second sequence of triangles

90

2.2. Algorithms for unconstrained multivariable optimization

M =
B + G

2
= (1.5, 7.5), R = 2M −W = (1, 15) (2.114)

The value of f at the reflected point is: f(1, 15) = 106. It is less than f(G) =
f(0, 6) = 116 but greater than f(B) = f(3, 9) = 50. Therefore, the extended
point will not be calculated and the new triangle is ∆RGB.

Third iteration Because f(3, 9) < f(1, 15) < f(0, 6), the new labels are (Fig-
ure 2.26):

B = (3, 9), G = (1, 15), W = (0, 6) (2.115)

Figure 2.26: The third sequence of triangles

A new midpoint and a reflected point are calculated:

M =
B + G

2
= (2, 12), R = 2M −W = (4, 18) (2.116)

and the function takes at R the value f(R) = f(4, 18) = 100. This is again
less than the value at G but it is not less than the value at B, thus the point R

will be a vertex of the next triangle ∆RGB.

Fourth iteration Because f(3, 9) < f(4, 18) < f(1, 15), the new labels are (Fig-

91

Chapter 2. Numerical optimization

ure 2.27):
B = (3, 9), G = (4, 18), W = (1, 15) (2.117)

Figure 2.27: The fourth sequence of triangles

The midpoint of BG and R result as:

M =
B + G

2
= (3.5, 13.5), R = 2M −W = (6, 12) (2.118)

Because f(R) = f(6, 12) = 20 < f(B), we shall build the extended point E:

E = 2R−M = (8.5, 10.5) (2.119)

The function takes here the value f(E) = f(8.5, 10.5) = 2.5, thus the new
triangle is ∆GBE.

The calculations continue until the function values at the vertices have almost
equal values (with some allowable tolerance ε). It will still take a large number of
steps until the procedure will reach the minimum point (10, 10) where the function

92

2.2. Algorithms for unconstrained multivariable optimization

value is 0, but the steps performed above show that the function is decreasing at each
iteration.

2.2.6.2 Rosenbrock method

The main drawback of the Nelder-Mead method is that general convergence
properties have not been proven. An alternative for a derivative-free algo-
rithm is the method of Rosenbrock whose global convergence to a local op-
tima is assured.

This zero-order method solves the unconstrained optimization problem
of minimizing a nonlinear function f : Rn → R, (Rosenbrock, 1960). Starting
at an initial point x0, the method explores locally along n orthogonal direc-
tions seeking for a better solution. The first set of directions is usually com-
posed of the base vectors of an n-dimensional coordinate system. During the
iterative process, this set is recalculated such that the first vector to point into
the direction of the maximum function decrease.

Example 2.6 Consider the orthogonal coordinate system x1 − x2 shown in Fig-
ure 2.28. A set of normalized vectors in the direction of the axes is (d1,d2) given

Figure 2.28: Rotation of a coordinate system

by:

d1 =

[
1
0

]
, d2 =

[
0
1

]
(2.120)

93

Chapter 2. Numerical optimization

Consider an initial point A having the coordinates given by the vector xA =
[x1A x2A]T . We move to point B that is at a distance s1 in the direction of the
x1-axis, this being the direction d1. The coordinates of B are calculated as:

[
x1B

x2B

]
=

[
x1A

x1A

]
+ s1

[
1
0

]
(2.121)

or, in a vector form:
xB = xA + s1d1 (2.122)

From B we move a distance s2 in the direction of d2 to obtain a point C:

xC = xB + s2d2 (2.123)

The coordinate system is now rotated and the new orthogonal directions of the
axes are d′1, d′2. If we move further on to the point D along d′1 and then to E along
d′2, with the distances s′1 and s′2, the coordinates are given by similar relations:

xD = xC + s′1d
′
1 (2.124)

xE = xD + s′2d
′
2 (2.125)

The initial data for the Rosenbrock method include, (Lucaci and Agachi,
2002):

• an initial vector x0 = [x10 x20 . . . xn0]T

• a set of initial orthogonal normalized vectors d10, d20, ..., dn0. Usually
they are taken as the columns of an n-th order unit matrix.

• an initial vector of step lengths along each direction s =
[s10 s20 . . . sn0]T

• the accuracy tolerance (ε) of the solution

The problems that have to be met in the implementation of the method
are given below, (Rosenbrock, 1960):

Step length. The initial step length will be changed during the algorithm. If
a move was successful in one direction di, i.e., the function decreases
or f(x + sidi) < f(x), the step length will be multiplied by a factor

94

2.2. Algorithms for unconstrained multivariable optimization

α > 1. If the move failed, the step was multiplied by −β where 0 <

β < 1. Thus, at the next iteration, the move will be performed on the
direction opposite to di and with a smaller step length. If the step size
was initially so small that it made no change in the value of f , it would
be increased on the next attempt. Each such attempt will be called a
”trial”.

Directions. An important issue related to this method is to decide when
and how to change the set of directions. The exploration along the axes
followed by the calculation of a new point in case of a successful result
is continued until at least one trial had been successful in each direction
and one had failed.

In this case a new set of directions d′k, k = 1, n is calculated using the
following procedure:

Let Di be the algebraic sum of all successful step lengths in the direction
di and compute the following vectors:

A1 = D1d1 + D2d2 + . . . + Dndn (2.126)

A2 = D2d2 + . . . + Dndn (2.127)

. . .

An = Dndn (2.128)

(2.129)

Thus Ai is the vector joining the initial and final points obtained by
use of the vectors dk, k = i, n. Orthogonal unit vectors of the new
coordinate system (d′1, d′2, ..., d′n) are obtained from Ai by the Gram-
Schmidt orthogonalization procedure:

B1 = A1, d′1 =
B1

‖B1‖ (2.130)

B2 = A2 − AT
2 B1

‖B1‖2
B1, d′2 =

B2

‖B2‖ (2.131)

. . .

Bn = An −
n−1∑

j=1

AT
nBj

‖Bj‖2
Bj , d′n =

Bn

‖Bn‖ (2.132)

95

Chapter 2. Numerical optimization

The new set of directions was calculated such that d′1 lies along the
direction of fastest decrease, d′2 along the best direction which can be
found normal to d′1 and so on.

For the practical implementation we have to consider the following is-
sues:

• The algorithm terminates when a convergence criterion is fulfilled: the
distance between two consecutive points, xk+1 and xk is smaller than a
given tolerance ε or the function value is not improved more than ε:

‖xk+1 − xk‖ ≤ ε, or f(xk+1)− f(xk) ≤ ε (2.133)

• The set of directions will be re-calculated when there is a success and a
failure on each direction, which is similar to an oscillation. During the
exploration on a direction di a variable success(i) can be set equal to 1
to mark a successful move and a variable fail(i) can be set to 1 to mark
a failure. If all variables of this type are 1 the new directions have to be
determined.

The method is summarized in Algorithm 12.

Example 2.7 Using the Rosenbrock method minimize the ’banana’ function (or
Rosenbrock function):

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2 (2.134)

The algorithm was implemented with the following initial conditions:

• Initial point x0 = [0 0]T

• Initial step lengths s = [0.5 0.5]T

• The factors α = 3 and β = −0.5

and the global minimum at (1, 1) was obtained with an accuracy ε = 10−6. The
result is shown in Figure 2.29.

96

2.2. Algorithms for unconstrained multivariable optimization

Algorithm 12 Rosenbrock method
Define function f(x)
Select an initial point x0

Initialize n orthogonal directions d10, d20, ..., dn0 as the columns of a unit
matrix
Initialize the vector of step lengths s = [s10 s20 . . . sn0]T

Select factors α > 1 and −1 < β < 0
Select accuracy tolerance ε
Set k = 1
while stop criterion not fulfilled do

Initialize the vector of successful steps for all directions D = [0 0 . . . 0]
Initialize a flag for oscillation: oscillation = false
Initialize a vector to store successes on each direction: success =
[0 0 . . . 0]
Initialize a vector to store failures on each direction: fail = [0 0 . . . 0]
while oscillation = false and stop criterion not fulfilled do

for i=1:n do
if f(xk + sidi) < f(xk) then

Move to the next point. Compute xk+1 = xk + sidi

Set k ← k + 1
Mark a success on direction di. Set success(i) = 1
Add the step length to Di. Set Di ← Di + si

Increase the step length. Set si ← si · α
else

Mark a failure on direction di. Set fail(i) = 1
Decrease the step length. Set si ← si · β

end if
end for
if all sucess(i) = 1 and all fail(i) = 1 then

Set oscillation = true
end if

end while
Compute the new directions using the Gram-Schmidt procedure from
vectors D and dj , j = 1, n

end while

97

Chapter 2. Numerical optimization

x
1

x 2

start

stop

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.29: Minimization of Rosenbrock banana function

98

